skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Costello, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. ABSTRACT Understanding the movement patterns and behavior of marine organisms is fundamental for numerous ecological, conservation and management applications. Over the past several decades, advancements in tracking technologies and analytical methods have revolutionized our ability to study marine animal movements. Oceanic zooplankton often make up the bulk of the macroscopic animal biomass in the oceans, yet we know very little about the life histories, migrations and long-term behaviors of these ecologically important animals. In this Review, we consider recent developments in marine movement ecology and animal tracking techniques of gelatinous zooplankton, and discuss the challenges, opportunities and future directions in this rapidly evolving field. 
    more » « less
    Free, publicly-accessible full text available February 15, 2026
  3. Koski, Marja (Ed.)
    Abstract Ctenophores are numerically dominant members of oceanic epipelagic communities around the world. The ctenophore community is often comprised of several common, co-occurring lobate and cestid genera. Previous quantifications of the amount of fluid that lobate ctenophores entrain in their feeding currents revealed that oceanic lobates have the potential for high feeding rates. In order to more directly examine the trophic role of oceanic lobate ctenophores, we quantified the encounter and retention efficiencies of several co-occurring species (Bolinopsis vitrea, Ocyropsis crystallina, Eurhamphea vexilligera and Cestum veneris) in their natural environments. Encounters and predator–prey interactions were video recorded in the field using specialized cameras and SCUBA techniques. The lobate species encountered, on average, 2.4 prey per minute and ingested 40% of these prey. This translated to an estimated ingestion rate of close to 1 prey per minute. Cestum veneris and most of the lobate species retained prey as efficiently as the voracious coastal lobate predator Mnemiopsis leidyi, suggesting that these oceanic species have a similar predation impact in their environments as M. leidyi does in coastal ecosystems. Hence, quantified in situ predatory-prey interactions indicate that epipelagic ctenophores have a significant impact on oceanic ecosystems worldwide. 
    more » « less
  4. Helical motion is prevalent in nature and has been shown to confer stability and efficiency in microorganisms. However, the mechanics of helical locomotion in larger organisms (>1 centimeter) remain unknown. In the open ocean, we observed the chain forming salp,Iasis cylindrica, swimming in helices. Three-dimensional imaging showed that helicity derives from torque production by zooids oriented at an oblique orientation relative to the chain axis. Colonies can spin both clockwise and counterclockwise and longer chains (>10 zooids) transition from spinning around a linear axis to a helical swimming path. Propulsive jets are non-interacting and directed at a small angle relative to the axis of motion, thus maximizing thrust while minimizing destructive interactions. Our integrated approach reveals the biomechanical advantages of distributed propulsion and macroscale helical movement. 
    more » « less
  5. Abstract Oceanic ctenophores are widespread predators on pelagic zooplankton. While data on coastal ctenophores often show strong top-down predatory impacts in their ecosystems, differing morphologies, prey capture mechanisms and behaviors of oceanic species preclude the use of coastal data to draw conclusion on oceanic species. We used high-resolution imaging methods both in situ and in the laboratory to quantify interactions of Ocyropsis spp. with natural copepod prey. We confirmed that Ocyropsis spp. uses muscular lobe contraction and a prehensile mouth to capture prey, which is unique amongst ctenophores. This feeding mechanism results in high overall capture success whether encountering single or multiple prey between the lobes (71 and 81% respectively). However, multiple prey require several attempts for successful capture whereas single prey are often captured on the first attempt. Digestion of adult copepods takes 44 min at 25 °C and does not vary with ctenophore size. At high natural densities, we estimate that Ocyropsis spp. consume up to 40% of the daily copepod standing stock. This suggests that, when numerous, Ocyropsis spp. can exert strong top-down control on oceanic copepod populations. At more common densities, these animals consume only a small proportion of the daily copepod standing stock. However, compared to data from pelagic fishes and oceanic medusae, Ocyropsis spp. appears to be the dominant copepod predator in this habitat. 
    more » « less
  6. Abstract Ephyrae, the early stages of scyphozoan jellyfish, possess a conserved morphology among species. However, ontogenetic transitions lead to morphologically different shapes among scyphozoan lineages, with important consequences for swimming biomechanics, bioenergetics and ecology. We used high-speed imaging to analyse biomechanical and kinematic variables of swimming in 17 species of Scyphozoa (1 Coronatae, 8 “Semaeostomeae” and 8 Rhizostomeae) at different developmental stages. Swimming kinematics of early ephyrae were similar, in general, but differences related to major lineages emerged through development. Rhizostomeae medusae have more prolate bells, shorter pulse cycles and higher swimming performances. Medusae of “Semaeostomeae”, in turn, have more variable bell shapes and most species had lower swimming performances. Despite these differences, both groups travelled the same distance per pulse suggesting that each pulse is hydrodynamically similar. Therefore, higher swimming velocities are achieved in species with higher pulsation frequencies. Our results suggest that medusae of Rhizostomeae and “Semaeostomeae” have evolved bell kinematics with different optimized traits, rhizostomes optimize rapid fluid processing, through faster pulsations, while “semaeostomes” optimize swimming efficiency, through longer interpulse intervals that enhance mechanisms of passive energy recapture. 
    more » « less
  7. Siphonophores are ubiquitous and often highly abundant members of pelagic ecosystems throughout the open ocean. They are unique among animal taxa in that many species use multiple jets for propulsion. Little is known about kinematics of the individual jets produced by nectophores or whether the jets are coordinated during normal swimming behavior. Using remotely operated vehicles and SCUBA, we video recorded the swimming behavior of several physonect species in their natural environment. The pulsed kinematics of the individual nectophores that comprise the siphonophore nectosome were quantified and, based on these kinematics, we examined the coordination of adjacent nectophores. We found that, for the 5 species considered, nectophores located along same side of the nectosomal axis (i.e.; axially aligned) were coordinated and their timing was offset such that they pulsed metachronally. However, this level of coordination did not extend across the nectosome and no coordination was evident between nectophores on opposite sides of the nectosomal axis. For most species, the metachronal contraction waves of nectophores were initiated by the apical nectophores and traveled dorsally. However, the metachronal wave of Apolemia rubriversa traveled in the opposite direction. Although nectophore groups on opposite sides of the nectosome were not coordinated, they pulsed with similar frequencies. This enabled siphonophores to maintain relatively linear trajectories during swimming. The timing and characteristics of the metachronal coordination of pulsed jets affects how the jet wakes interact and may provide important insight into how interacting jets may be optimized for efficient propulsion. 
    more » « less
  8. ABSTRACT Even casual observations of a crow in flight or a shark swimming demonstrate that animal propulsive structures bend in patterned sequences during movement. Detailed engineering studies using controlled models in combination with analysis of flows left in the wakes of moving animals or objects have largely confirmed that flexibility can confer speed and efficiency advantages. These studies have generally focused on the material properties of propulsive structures (propulsors). However, recent developments provide a different perspective on the operation of nature's flexible propulsors, which we consider in this Commentary. First, we discuss how comparative animal mechanics have demonstrated that natural propulsors constructed with very different material properties bend with remarkably similar kinematic patterns. This suggests that ordering principles beyond basic material properties govern natural propulsor bending. Second, we consider advances in hydrodynamic measurements demonstrating suction forces that dramatically enhance overall thrust produced by natural bending patterns. This is a previously unrecognized source of thrust production at bending surfaces that may dominate total thrust production. Together, these advances provide a new mechanistic perspective on bending by animal propulsors operating in fluids – either water or air. This shift in perspective offers new opportunities for understanding animal motion as well as new avenues for investigation into engineered designs of vehicles operating in fluids. 
    more » « less
  9. Many fishes employ distinct swimming modes for routine swimming and predator escape. These steady and escape swimming modes are characterized by dramatically differing body kinematics that lead to context-adaptive differences in swimming performance. Physonect siphonophores, such as Nanomia bijuga , are colonial cnidarians that produce multiple jets for propulsion using swimming subunits called nectophores. Physonect siphonophores employ distinct routine and steady escape behaviors but–in contrast to fishes–do so using a decentralized propulsion system that allows them to alter the timing of thrust production, producing thrust either synchronously (simultaneously) for escape swimming or asynchronously (in sequence) for routine swimming. The swimming performance of these two swimming modes has not been investigated in siphonophores. In this study, we compare the performances of asynchronous and synchronous swimming in N. bijuga over a range of colony lengths (i.e., numbers of nectophores) by combining experimentally derived swimming parameters with a mechanistic swimming model. We show that synchronous swimming produces higher mean swimming speeds and greater accelerations at the expense of higher costs of transport. High speeds and accelerations during synchronous swimming aid in escaping predators, whereas low energy consumption during asynchronous swimming may benefit N. bijuga during vertical migrations over hundreds of meters depth. Our results also suggest that when designing underwater vehicles with multiple propulsors, varying the timing of thrust production could provide distinct modes directed toward speed, efficiency, or acceleration. 
    more » « less